MID-SEMESTER EXAMINATION M. MATH II YEAR, II SEMESTER 2016-2017 ERGODIC THEORY

Max. Score: 100 3hrs.

Time limit:

1. Let $(\Omega, \mathcal{F}, P, T)$ be a dynamical system and $A \in \mathcal{F}$ with P(A) > 0. Prove that there exists a positive integer n with $P(T^{-n}A \cap A) > 0$. [10]

2. Let $\Omega = S^1, \mathcal{F} = \text{Borel } \sigma$ - field, P = normalized Haar measure, Tz = czwhere $c \in S^1$ is not a root of unity. Find all eigen values and eigen functions of T. [20]

3. Define $T: [0,\infty) \to [0,\infty)$ by $Tx = x^2$. Find all Borel probability mesures P on $[0,\infty)$ which are absolutely continuous w.r.t. Lebesgue measure and which are invariant for T. [20]

4. Let $(\Omega, \mathcal{F}, P, T)$ be a dynamical system and T be ergodic. Let f be a 4. Let $(\alpha, \beta, \gamma, \gamma, \gamma)$ be a Granning product of the second sec almost surely. Show that $f \in L^1(P)$. [15]

5. Let
$$\{T_t : t \ge 0\}$$
 be a flow on (Ω, \mathcal{F}, P) . Show that $n \int_{1}^{1+\frac{1}{n}} f(T_t)dt \to f(T_1)$
nost surely as $n \to \infty$. [15]

almost surely as $n \to \infty$.

6. Let $P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Let *T* be the shift associated with the Markov chain with transition matrix *P*. Is *T* ergodic? If so, is it mixing. If so what is

 $\lim_{n\to\infty} P^n?$ [20]